Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Infect Drug Resist ; 15: 3417-3425, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1923797

RESUMEN

Background: Pneumonia produced by coinfection with Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) in infants and young children without timely diagnosis and treatment is often fatal due to the limitations of traditional tests. More accurate and rapid diagnostic methods for multiple infections are urgently needed. Case Presentation: Here, we report a case of a 2-month-old boy with pneumonia caused by Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) without HIV infection. Chest computed tomography (CT) showed massive exudative consolidation in both lungs. Microscopic examination of stained sputum and smear specimens and bacterial and fungal culture tests were all negative, and CMV nucleic acid and antibody tests were positive. After a period of antiviral and anti-infective therapy, pulmonary inflammation was not relieved. Subsequently, sputum and venous blood samples were analysed by metagenomic next-generation sequencing (mNGS), and the sequences of PJ and CMV were acquired. The patient was finally diagnosed with pneumonia caused by PJ and CMV coinfection. Anti-fungal combined with anti-viral therapy was given immediately. mNGS re-examination of bronchoalveolar lavage fluid (BALF) also revealed the same primary pathogen. Therapy was stopped due to the request of the patient's guardian. Hence, the child was discharged from the hospital and eventually died. Conclusion: This case emphasizes the combined use of mNGS and traditional tests in the clinical diagnosis of mixed lung infections in infants without HIV infection. mNGS is a new adjunctive diagnostic method that can rapidly discriminate multiple causes of pneumonia.

2.
Anal Chim Acta ; 1154: 338310, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1077731

RESUMEN

Novel coronavirus disease (COVID-19) caused by SARS-CoV-2 is an ongoing global pandemic associated with high rates of morbidity and mortality. RT-qPCR has become the diagnostic standard for the testing of SARS-CoV-2 in most countries. COVID-19 diagnosis generally relies upon RT-qPCR-mediated identification of SARS-CoV-2 viral RNA, which is costly, labor-extensive, and requires specialized training and equipment. Herein, we established a novel one-tube rapid diagnostic approach based upon formamide and colorimetric RT-LAMP (One-Pot RT-LAMP) that can be used to diagnose COVID-19 without the extraction of specific viral RNA. The technique could visually detect SARS-CoV-2 within 45 min with a limit of detection of 5 copies per reaction in extracted RNA, and about 7.66 virus copies per µL in viral transport medium. The One-Pot RT-LAMP test showed a high specificity without cross-reactivity with 12 viruses including SARS-CoV, MERS-CoV, and human infectious influenza virus (H1N1/H3N2 of influenza A and B virus, ect. We validated this One-Pot RT-LAMP approach by its successful use for the analysis of 45 clinical nasopharyngeal swab samples, yielding results identical to those of traditional RT-qPCR analyses, while achieving good selectivity and sensitivity relative to a commercial RT-qPCR approach. As such, this One-Pot RT-LAMP technology may be a valid means of conducting high-sensitivity, low-cost and rapid SARS-CoV-2 identification without the extraction of viral RNA.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Cartilla de ADN/química , Cartilla de ADN/metabolismo , Humanos , Límite de Detección , Técnicas de Diagnóstico Molecular , Nasofaringe/virología , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/análisis , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo
3.
mSphere ; 5(4)2020 08 26.
Artículo en Inglés | MEDLINE | ID: covidwho-730989

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak urgently necessitates sensitive and convenient COVID-19 diagnostics for the containment and timely treatment of patients. We aimed to develop and validate a novel reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay to detect SARS-CoV-2. Patients with suspected COVID-19 and close contacts were recruited from two hospitals between 26 January and 8 April 2020. Respiratory samples were collected and tested using RT-LAMP, and the results were compared with those obtained by reverse transcription-quantitative PCR (RT-qPCR). Samples yielding inconsistent results between these two methods were subjected to next-generation sequencing for confirmation. RT-LAMP was also applied to an asymptomatic COVID-19 carrier and patients with other respiratory viral infections. Samples were collected from a cohort of 129 cases (329 nasopharyngeal swabs) and an independent cohort of 76 patients (152 nasopharyngeal swabs and sputum samples). The RT-LAMP assay was validated to be accurate (overall sensitivity and specificity of 88.89% and 99.00%, respectively) and diagnostically useful (positive and negative likelihood ratios of 88.89 and 0.11, respectively). RT-LAMP showed increased sensitivity (88.89% versus 81.48%) and high consistency (kappa, 0.92) compared to those of RT-qPCR for SARS-CoV-2 screening while requiring only constant-temperature heating and visual inspection. The time required for RT-LAMP was less than 1 h from sample preparation to the result. In addition, RT-LAMP was feasible for use with asymptomatic patients and did not cross-react with other respiratory pathogens. The developed RT-LAMP assay offers rapid, sensitive, and straightforward detection of SARS-CoV-2 infection and may aid the expansion of COVID-19 testing in the public domain and hospitals.IMPORTANCE We developed a visual and rapid reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay targeting the S gene for SARS-CoV-2 infection. The strength of our study was that we validated the RT-LAMP assay using 481 clinical respiratory samples from two prospective cohorts of suspected COVID-19 patients and on the serial samples from an asymptomatic carrier. The developed RT-LAMP approach showed an increased sensitivity (88.89%) and high consistency (kappa, 0.92) compared with those of reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 screening while requiring only constant-temperature heating and visual inspection, facilitating SARS-CoV-2 screening in well-equipped labs as well as in the field. The time required for RT-LAMP was less than 1 h from sample preparation to the result (more than 2 h for RT-qPCR). This study showed that the RT-LAMP assay was a simple, rapid, and sensitive approach for SARS-CoV-2 infection and can facilitate COVID-19 diagnosis, especially in resource-poor settings.


Asunto(s)
Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Neumonía Viral/diagnóstico , Adulto , Enfermedades Asintomáticas , COVID-19 , Prueba de COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA